The circular law for sparse non-Hermitian matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Circular Law for Random Matrices

We consider the joint distribution of real and imaginary parts of eigenvalues of random matrices with independent real entries with mean zero and unit variance. We prove the convergence of this distribution to the uniform distribution on the unit disc without assumptions on the existence of a density for the distribution of entries. We assume that the entries have a finite moment of order large...

متن کامل

Local Circular Law for Random Matrices

The circular law asserts that the spectral measure of eigenvalues of rescaled random matrices without symmetry assumption converges to the uniform measure on the unit disk. We prove a local version of this law at any point z away from the unit circle. More precisely, if ||z| − 1| > τ for arbitrarily small τ > 0, the circular law is valid around z up to scale N−1/2+ε for any ε > 0 under the assu...

متن کامل

Circular Law Theorem for Random Markov Matrices

Let (Xjk)jk>1 be i.i.d. nonnegative random variables with bounded density, mean m, and finite positive variance σ. Let M be the n × n random Markov matrix with i.i.d. rows defined by Mjk = Xjk/(Xj1+ · · ·+Xjn). In particular, when X11 follows an exponential law, the random matrix M belongs to the Dirichlet Markov Ensemble of random stochastic matrices. Let λ1, . . . , λn be the eigenvalues of √...

متن کامل

Random Doubly Stochastic Matrices: the Circular Law

Let X be a matrix sampled uniformly from the set of doubly stochastic matrices of size n×n. We show that the empirical spectral distribution of the normalized matrix √ n(X − EX) converges almost surely to the circular law. This confirms a conjecture of Chatterjee, Diaconis and Sly.

متن کامل

Wigner surmise for Hermitian and non-Hermitian chiral random matrices.

We use the idea of a Wigner surmise to compute approximate distributions of the first eigenvalue in chiral random matrix theory, for both real and complex eigenvalues. Testing against known results for zero and maximal non-Hermiticity in the microscopic large- N limit, we find an excellent agreement valid for a small number of exact zero eigenvalues. Compact expressions are derived for real eig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 2019

ISSN: 0091-1798

DOI: 10.1214/18-aop1310